

FIREFLY-1 (PNOC026): Phase 2 study of pan-RAF inhibitor tovorafenib in pediatric and young adult patients with RAF-altered recurrent or progressive low-grade glioma or advanced solid tumors

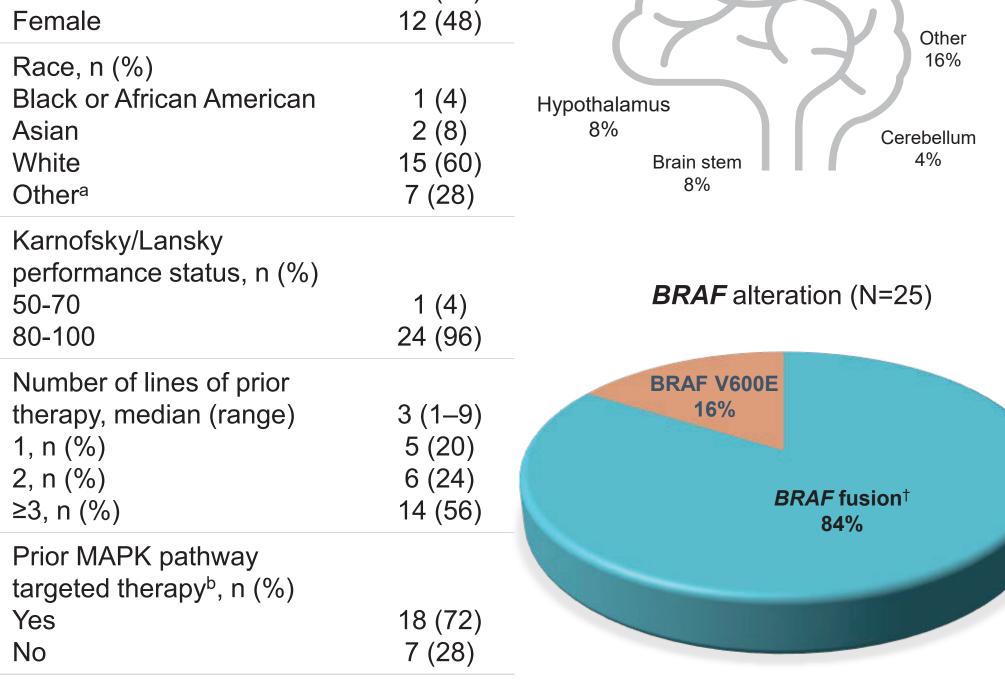
Lindsay Kilburn,¹ Daniel Landi,² Sarah Leary,³ David S. Ziegler,⁴ Patricia Baxter,⁵ Andrea Franson,⁶ Geoffrey McCowage,⁷ Angela J. Waanders,⁸ Jasper Van der Lugt,⁹ Michal Yalon Oren,¹⁰ Nicolas U. Gerber,¹¹ Nicholas G. Gottardo,¹² Dong-Anh Khuong-Quang,¹³ Karsten Nysom,¹⁴ Simon Bailey,¹⁵ Pablo Hernáiz Driever,¹⁶ Sebastien Perreault,¹⁷ Olaf Witt,¹⁸ Seungmin Hahn,¹⁹ Darren Hargrave,²⁰ Timothy Hassall,²¹ Nada Jabado,²² Hyoung Jin Kang,²³ Valerie Larouche,²⁴ Helen Toledano,²⁵ Cassie Kline,²⁶ Mohamed S. Abdelbaki,²⁷ Susan N. Chi,²⁸ Sharon L. Gardner,²⁹ Nicholas Whipple,³⁰ Sabine Mueller,³¹ Samuel C. Blackman,³² Xin Zhao,³² Daniel Da Costa,³² Michael C. Cox,³² Roger Packer,¹ Jordan R. Hansford³³

¹Children's National Hospital, Washington, DC, USA; ²Duke University, Durham, NC, USA; ³Cancer and Blood Disorders Center, Seattle, WA, USA; ⁴Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia; ⁵Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA; ⁷Sydney Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Medicine, Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Houston, TX, USA; ⁶C. S. Mott Children's Hospital, Baylor College of Houston, TX, USA; ⁶C. S. Mott Childr Hospitals Network, Westmead, NSW, Australia; ¹⁰Sheba Medical Center, Tel Hashomer, Israel; ¹¹University Children's Hospital, Chicago, IL, USA; ⁹Princess Máxima Center, Tel Hashomer, Israel; ¹²Children's Hospital, Victoria, Australia; ¹⁴Rigshospitalet, Copenhagen, ISrael; ¹¹University Children's Hospital, Victoria, Australia; ¹⁴Rigshospitalet, Copenhagen, IS, ¹⁰Sheba Medical Center, Tel Hashomer, Israel; ¹¹University Children's Hospital, Victoria, Australia; ¹⁴Rigshospitalet, Copenhagen, IS, ¹⁰Sheba Medical Center, Tel Hashomer, Israel; ¹¹University Children's Hospital, Victoria, Australia; ¹⁴Rigshospitalet, Copenhagen, IS, ¹⁰Sheba Medical Center, Tel Hashomer, Israel; ¹¹University Children's Hospital, Victoria, Australia; ¹⁴Rigshospitalet, Copenhagen, IS, ¹⁰Sheba Medical Center, Tel Hashomer, Israel; ¹¹University Children's Hospital, Victoria, Australia; ¹⁴Rigshospitalet, Copenhagen, IS, ¹⁰Sheba Medical Center, Tel Hashomer, Israel; ¹⁰Sheba Medical Center, Denmark; ¹⁵Northern Institute for Cancer Research, Newcastle Universität Berlin, Germany; ¹⁷CHU Sainte-Justine, Universitätsmedizin Berlin, Germany; ¹⁸Hopp Children's Cancer Center, Heidelberg, Germany; ¹⁹Severance Hospital, Yonsei Universität Berlin, Germany; ¹⁹CHU Sainte-Justine, Universität Berlin, Germany; ¹⁰CHU Sainte-Justine, Univ Ormond Street Institute of Child Health, London, UK; ²¹Queensland Children's Hospital, Brisbane, Queensland, Australia; ²²McGill University Children's Hospital, Seoul National University Cancer Research Institute, Wide River Institute, Wi Québec City, QC, Canada; ²⁵Schneider Children's Medical Center, New York, NY, USA; ²⁷Washington University of Utah, Salt Lake City, UT, USA; ³¹UCSF Helen Diller Family A, USA; ²⁸Dana-Farber/ Boston, MA, USA; ²⁷Washington University School of Medicine, St Louis, MO, USA; ²⁸Dana-Farber/ Boston, MA, USA; ²⁹NYU Langone Medical Center, New York, NY, USA; ³⁰University of Utah, Salt Lake City, UT, USA; ³¹UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; ³²Day One Biopharmaceuticals, Brisbane, CA, USA; ³³Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Research Institute; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital; South Australia; Michael Rice Cancer Centre, Royal Children's Hospital;

2022 SNO Annual Meeting: Abstract CTNI-68

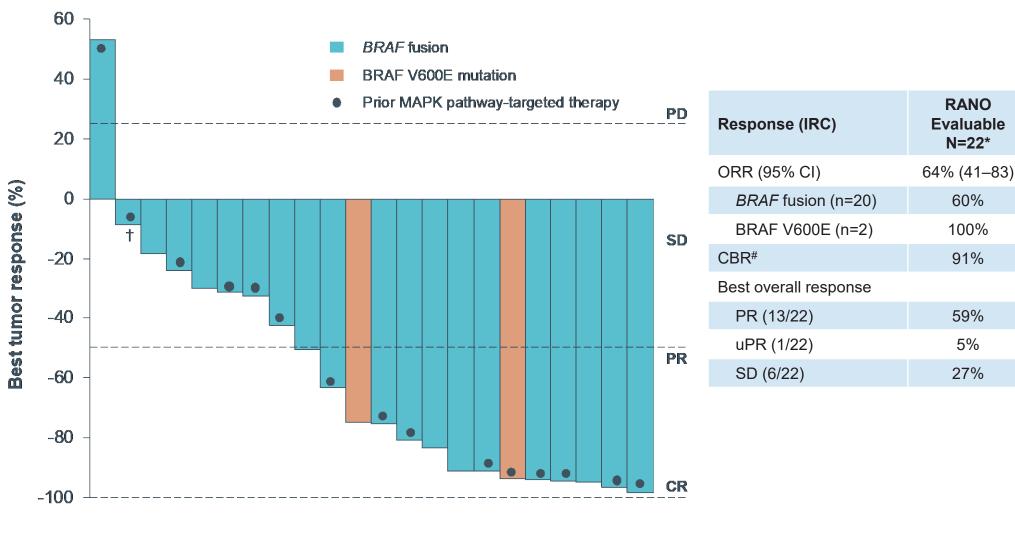
Background	Key exclusion criteria	Figure 2. Baselin	e characte	eristics	Figure 6. Duration of tovorafenib therapy in patients with RANO-evaluable lesions			
 The serine/threonine RAF kinases (ARAF, BRAF and 	 Additional previously known, or expected to be, activating 	Characteristic	Arm 1 (N=25)	<i>Location</i> (N=25)				
RAF1), are signaling components of the mitogen activated protein kinase/ERK (MAPK) pathway, a key regulator of	 molecular alteration Symptoms of clinical progression without radiographically 	Median age, years (range) Sex, n (%) Male	8 (3–18) 13 (52)	Optic pathway 52% Deep midline structur 12%	4 • 5 • 5 • 6 • 7 • 8 •			

cell proliferation and survival^{1,2}


- *RAF* fusions (involving either *BRAF* or *RAF1*) and BRAF V600E mutations are oncogenic drivers found on a mutually exclusive basis in most pediatric low-grade gliomas (pLGGs)³
- *KIAA1549-BRAF* fusions are the most commonly seen *RAF* alterations in pediatric LGG, occurring in 30–40% of all cases and up to 80% of pilocytic astrocytomas^{3,4}
- Tovorafenib (DAY101) is an investigational, oral, highly selective, CNS-penetrant, small molecule, type II pan-RAF inhibitor
 - In contrast to type I BRAF inhibitors, tovorafenib does not induce RAS-dependent paradoxical activation of the MAPK pathway
 - Tovorafenib inhibits both oncogenic RAF fusions, which signal as RAS-independent dimers and V600E-mutated BRAF, which signals as a RAS-independent monomer⁵

recurrent or radiographically progressive disease

- Known or suspected diagnosis of neurofibromatosis type
- History of any major disease, other than the primary malignancy under study, that might interfere with safe protocol participation
- Central serous retinopathy or retinal vein occlusion, or ophthalmopathy present at baseline that would be considered a risk factor for either
- Major surgery within 14 days prior to C1D1


Figure 1. Study design

- Clinically significant active cardiovascular disease
- Enrolled in any other investigational treatment study
- Neurological instability despite adequate treatment
- Current treatment with a strong CYP2C8 inhibitor or inducer (other than those specified as allowed)

^aIncludes 4 patients with race not specified. ^bPrior MAPK pathway targeted therapy indicates either prior MEK inhibitor and/or prior type I RAF inhibitor therapy. [†]Includes 2 patients with tumors harboring *BRAF* duplication and 1 with BRAF rearrangement per fluorescence in situ hybridization. N, number of patients evaluated; n, number of patients with the specified event

Figure 3. Tumor response in patients with RANO-	
evaluable lesions	

	9	•		\bigcirc				
	10	\bigcirc						
2	11	•						
ien	12							
Patients	13		 					
	14	•						
	15	•			•			
	16 17	\bigcirc					BRAF fusion	
	18	•					BRAF V600 mutation	
	19		l. V			0	First response	
	20	•	 				Ongoing treatment	
	21	•				•	Progressive disease	
	22					•	Prior MAPK pathway-targ	jeted therapy
	0.0	.0 2.0	4.0	6.0	8.0		10.0	12.0
			time to response 2.8 months	Overall treatment duration	(months)			
1	7/2	22 patients remain on th	erapy; All resp	onders remain on treat	ment			
	2	ble 1. Adver	so ovont	' C				

	Treat emerge	ment- nt AEs ^a	Tre	Treatment-related AEs		
Preferred term, n (%)	Any grade	Grade ≥3		Any rade	Grade ≥3	
Blood creatine phosphokinase increased	20 (80)	2 (8)	18	(72)	2 (8)	
Hair color changes	17 (68)	-	17	(68)	-	
Anemia	14 (56)	3 (12)	10	(40)	2 (8)	
Aspartate aminotransferase increased	14 (56)	-	12	(48)	-	
Vomiting	14 (56)	2 (8)	6	(24)	1 (4)	
Rash*	13 (52)	3 (12)	13	(52)	3 (12)	
Blood lactate dehydrogenase increased	12 (48)	-	9	(36)	-	
Headache	10 (40)	-	3	(12)	-	

Objective

• To evaluate the efficacy and safety of tovorafenib monotherapy in patients with recurrent or progressive pLGG or solid tumors harboring activating BRAF alterations

Methods

- FIREFLY-1 (NCT04775485) is a 3-arm, open-label, global, registrational phase 2 trial of tovorafenib monotherapy in recurrent or progressive pLGG and solid tumors (Figure
 - Primary endpoint of registrational arm 1 is the overall response rate (ORR) based on RANO criteria, assessed by blinded independent central review (IRC)
 - Secondary endpoints include ORR by RAPNO criteria and safety
- Here we report an interim analysis of antitumor activity and safety in the first 25 patients enrolled in arm 1 (recurrent or progressive LGG) with ≥ 6 months follow up (data cutoff Apr 14, 2022)

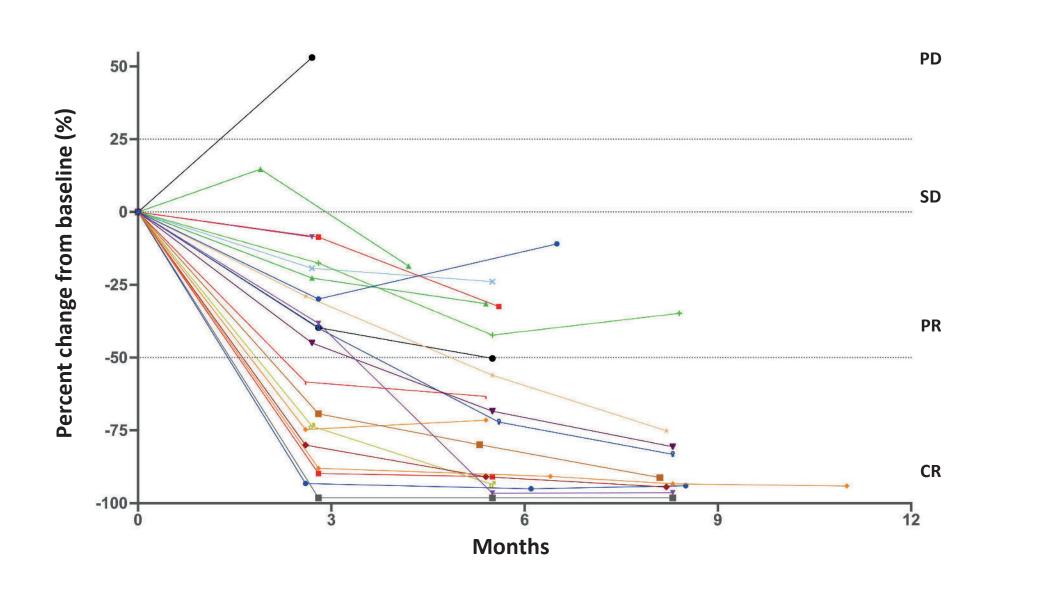
Key inclusion criteria

• Aged 6 months to 25 years with a *RAF*-altered LGG histopathologically verified at either original diagnosis or relapse (per criteria defined in **Figure 1**)

Approximately 60 patients Arm 2 (LGG extension) Children and young adults with recurrent or progressive LGG harboring a known (or expected to be) activating RAF alteration, including BRAF or CRAF fusions or BRAF V600 mutations Up to 60 patients

Arm 3 (advanced solid tumors)

Children and young adults with a locally advanced or metastatic solid tumor harboring a known (or expected to be) activating *RAF* fusion that has relapsed or progressed or was nonresponsive to available therapies


Up to 20 patients

Results

- As of April 14, 2022, 25 patients were enrolled to arm 1 and had ≥ 6 months of follow-up (**Figure 2**)
- Per independent assessment according to RANO criteria, partial responses (1 unconfirmed) were seen in 14 (64%) of 22 evaluable patients, with 6 additional patients having stable disease, and a clinical benefit rate of 91% (Figures 3, 4, 6)
 - Responses were achieved in tumors with *BRAF* fusions and V600E mutations

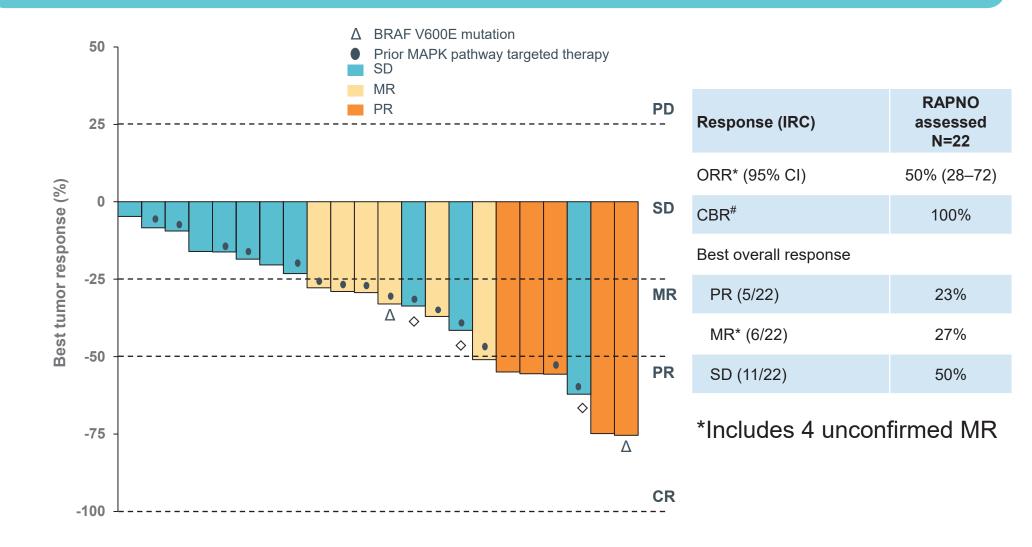
*3/25 patients lacked evaluable lesions per RANO criteria based on IRC evaluation. †Progressive disease due to presence of new lesions. [#]Patients with best overall response of CR, PR/uPR and SD CBR, clinical benefit rate; CI, confidence interval; PD, progressive disease; PR, partial response; SD, stable disease; uPR, unconfirmed partial response

Figure 4. Individual patient tumor change from baseline in RANO-evaluable patients

	1990 - A.						1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	1 A A			

Dry skin	9 (36)	-	7 (28)	-
Epistaxis	9 (36)	-	4 (16)	-
Constipation	8 (32)	-	5 (20)	-
Hypocalcemia	8 (32)	-	6 (24)	-
Nausea	8 (32)	-	3 (12)	-
Alanine aminotransferase increased	7 (28)	1 (4)	4 (16)	1 (4)
Fatigue	7 (28)	-	7 (28)	-

^aIncludes all any grade TEAEs ≥25% *Includes maculopapular and erythematous rash


Conclusions

- 56% of patients had received \geq 3 prior lines of therapy, and 72% were previously treated with MAPK pathwaytargeted agents
- Tovorafenib showed encouraging anticancer activity in pediatric patients with *BRAF*-altered recurrent or progressive LGG
 - Independent assessment (RANO) reported an ORR of 64% and CBR of 91%
- All patients with a response by RANO demonstrated tumor shrinkage as assessed by RAPNO, with a CBR of 100%
 - Tumor shrinkage by T2/FLAIR may trend behind reduction in T1 contrast uptake in some patients

- At least one line of prior systemic therapy and documented evidence of radiographic progression
- At least one RANO-measurable lesion (imaging performed within 28 days of initiation of treatment)
- Karnofsky (aged ≥16 years) or Lansky (aged <16 years) performance score of at least 50
- Fully recovered from any prior surgery and prior anticancer chemotherapy, and have undergone defined washout periods
- Chronic toxicities from prior anticancer therapy must be stable
- Available archival tumor tissue sample or fresh biopsy
- Adequate organ function

- Per independent assessment according to RAPNO criteria in the 22 evaluable patients, the ORR was 50% and the clinical benefit rate was 100% (**Figure 5**)
- Tovorafenib was generally well tolerated (**Table 1**), with most treatment-emergent adverse events (TEAEs) being grade 1 or 2 (96%)
- The most common grade ≥3 TEAEs were anemia (12%), vomiting, increased blood creatinine phosphokinase and maculopapular rash (8% each)
- Seven patients (28%) required dose modification due to treatment-related adverse events (AEs); no patients discontinued tovorafenib due to AEs

^oResponse not sustained on subsequent assessment. [#]Patients with best overall response of CR, PR, MR/uMR and SD MR, minor response

- Initial safety data suggested tovorafenib was generally well tolerated, with most adverse events being grade 1 or
- As of April 14, 2022, all responders remained on treatment, and no patients had discontinued due to adverse events

References

. Morrison D. Cold Spring Harb Perspect Biol. 2012;4:a011254 2. Yaeger R and Corcoran R. Cancer Discov. 2019;9:329–341 3. Ryall S, et al. *Cancer Cell*. 2020;37:569–583 4. Ryall S, et al. Acta Neuropathol Commun. 2020;8:30 5. Sun Y, et al. *Neuro Oncol.* 2017;19:774–785

Contact

Lindsay Kilburn MD: LKilburn@childrensnational.org